
Download DABBEL Changes
Problem analysis
Mon, Apr 10, 2000

Changes made by the Acnet database entry program are sent to the front-end nodes so that the 
changes can be reflected in a front-end database. This note discusses a problem that may occur 
when a device is deleted by changing its Acnet source node.

Server logic
It is common to use a server node when communicating with Acnet devices. Each device 

has an associated source node that is specified during DABBEL device input. When the post-
processing of the DABBEL audit file sends database change commands to the front-end that is 
the source node, that front-end act as a server node and decide where to send the database data. 
It learns that from an SSDR entry that includes the real target node and target analog channel 
number in that node. The server front-end then forwards the command to the real target node, 
which makes the changes locally, returning any error status to the server node, which then 
returns proper status to the host. If there is no response coming back to the server node, then 
the server node returns a time-out status to the host.

Switch to new source node
What happens when the source node is modified by DABBEL input? In this case, the 

device will have to be deleted from the original front-end database and added to the new front-
end database. But there are more than two front-ends involved in this operation, because there 
is a target front-end as well. If the target node is the same, but only the source node changes, 
what then?

A queue is maintained of commands to be sent to each front end that can be a source node. This 
means that one front-end that may be down will not impede the updating of other front end 
databases. When the front-end comes back up, the next post-DABBEL downloading will 
presumably bring that front-end back up-to-date with database changes. (It won't matter that 
the front end was not up-to-date while it was down, because it wasn't running, anyway.)

The problem
A potential problem arises when only changing the source node for a device. A delete 

command will be placed into the old front-end's queue, and an add command will be placed 
into the new front-end's queue. But since the same target node is used in both cases—we are 
assuming that the target node was not changed—there is an implicit sequence that is required 
to make it all work.

It is necessary to first delete the device as seen via the old front-end before adding the device to 
the new front end. This is because the device is not in either front-end, really; it is actually in the 
target node that is reachable via both new and old front end. If the add to the new front-end, 
operating via an independent queue, should be processed before the delete of the old front end, 
the real database information will first be modified in the target node by way of the new front 
end; then it will be deleted in the (same) target node by way of the old front-end.

Although the order is important between processing of the two queues, it is counter-intuitive 
when one does not recognize the existence of the common target node.Here is a diagram that 
indicates the flow of downloaded information:



Host

old 
FE

new 
FE

target
FE

Delete Add

Delete Add

When a Delete command is sent from a host, the front-end receiving it checks to see whether the 
device name is present in its own local database. If it is, then it processes the command itself, 
and the device is deleted. If it is not found in its local database, it forwards the command to the 
"broadcast" node, which is normally a multicast destination that should reach all nodes of the 
same project—the project with which that front-end is associated.

When the forwarded command is received by a node, it of course searches its database to see 
whether the device is present. If it is found, the node processes the command and returns status 
to the node who forwarded it. If it is not found, and the command was sent via multicast, then it 
does nothing. If a Delete command is sent from a host to a node that cannot find the device 
name in its own database, and the forwarded command does not reach any node that can find it 
within its own database, then no response is returned, and the server node will return a time-
out error status. This behavior is quite normal, because of the possibility that the target node is 
down. The local databases are distributed; each front end does not know within itself of the 
existence of devices that reside in other front-ends. It also does not know of the existence of 
devices that were formerly a part of its own database.

Download DABBEL Changes p. 2


