ECool Loss Monitors

Averaging scheme
Thu, Jun 16, 2005

Loss monitor signals are monitored in ECool to inhibit the electron beam if losses are too
high. But these signals are influenced by losses in the Main Injector that are unrelated to
ECool operation. It is thought that averaging the readings from the loss monitors over one
second may remove this unwelcome interdependence. This note discusses how this can be
done as a local application in the front end.

Since the averaging is to be done over a one second interval, it should not be necessary to
perform the averaging calculation more often than 15 Hz. A local application could generate
the average data without being involved in the KHz interrupt activity. But if it does this, how
can the results be monitored by the KHz monitoring already in place? The answer is to use
wide-open limits for those loss monitor channels that are to be averaged, and instead use the
normal 15 Hz alarms scanning to perform the check desired.

What is entailed by the averaging? For each LM, sample the KHz data points in the hardware
buffer that were written during the last cycle. This will bring us “up to date.” Accumulate a
sum of these data, which can be called a partial sum. Also keep a partial count of the number
of points represented in this partial sum. Referencing an array of 15 such partial sums, access
the oldest element. Subtract the (oldest) partial count from the total count, and subtract the
(oldest) partial sum from the total sum. Then overwrite the oldest partial sum with the
newest partial sum, and add this same newest partial sum to the diminished total sum, and
add the newest partial count to the diminished total count. Compute a revised average value
by using the updated total sum and count.

If the average results are stored in dummy analog channel readings, they can be accessed in
the normal way, and they could be monitored for alarms in the usual way and even inhibit
the electron beam via the “beam inhibit” control line. If the relay-based hardware is not
installed, the control line could be brought into a spare analog channel to be scrutinized at 1
KHz by the kuzM logic. This would be the means of turning off the electron beam. The
indication would only identify the channel to which the digital control line is attached. The
client application would then monitor the dummy channels for being in the “bad” alarm state
in order to identify the LM that “got us.”

The new LA can be called kHzA, for KHz data averaging. It operates independently from the
logic of KHZM. As for parameters, we need to know which channels must be so averaged, and
we need to know the target dummy channels. We might specify a range of LM channels and
a range of target dummy channels. Multiple instances of KHZA can provide for more flexibility
in channel assignments.

The period of averaging may be one second, but for greater flexibility, we can allow the
period to be specified as a number of 15 Hz cycles, up to a maximum of, say, 30.

Let the parameters be as follows:

ENABLE B Usual LA enable Bit#

PERIOD Averaging period in 15 Hz cycles

FIRST C First channel whose KHz readings are to be averaged
NCHAN Number of channels to average

TARGET C First target channel to receive averages

ECool Loss Monitors p. 2
If there are two ranges of channels to be so averaged, then two instances can cover them.

As for variable names, let MAXCHANS be the maximum number of channels to be handled with
one instance, which might be 16. Let MAXPARTS be the maximum number of partial sums to
be handled, which may be 30. Each element of array partSum can house the partial sums for
each channel. Thirty sets of these partial sums make up the array. In parallel to these sets is
an array of partCnt partial counts. A separate variable holds the totcnt total count for the
total sums array totSum. One Memory Dump page (64 bytes) can thus show the total sums
for all channels, or it can show any of the sets of partial sums for all channels.

Each 15 Hz cycle, the LA must determine the current KHz digitizer slot#, so it can find all the
data points that have been measured and stored within the last cycle. The variable prevslot
can hold the previous such slot#. It would need to be initialized to the current (valid) slot#,
and all sums and counts initialized to zero. Each cycle, it reduces the total sums by the oldest
partial sums, the set to which partx refers. Then this set of partial sums is cleared, and,
starting with the slot following the prevsSlot, it collects all the readings (from that slot to the
present completed slot) for each channel, accumulating them into the cleared partial sums,
modifying the total sums accordingly. Then the total sums are divided by the total count to
yield the average readings that are deposited as the dummy channel readings to be
monitored by the usual alarm scanning task.

Post implementation notes

The above plan was implemented as KHZA and testing in node0593, where it showed
that 1.7 ms per 15 Hz cycle is required to perform the averaging of KHz data for the
maximum of 16 consecutive channels. The maximum specifyable averaging period is 32
cycles, or just over 2 seconds. (The minimum is 1 cycle.) The arrangement of the static
memory allocated by the LA is as follows:

typedef struct Globals {

MBHdArType newHdr; /* generic memory block header */
Integer localNode; /* local node# */

Integer timeInit; /* initialization processing time */
Integer timeEx; /* execution time in usec */

Integer prevSlot; /* previous slot in A/D memory buffer */
Integer nParts; /* #partial sums */

Integer bChan; /* base input chan# */

Integer nChans; /* #chans in sequence */

Integer tChan; /* target result chan# */

Integer partX; /* partial sum index */

Integer totCnt; /* total count */

Longint regBase; /* register base address of A/D IP board */
Longint memBase; /* base address of A/D memory */
Integer £ill[147];

[*mm e 0x0040-——=———- */

Integer average[MAXCHANS]; /* average results */

Integer fillavg[l6];

[*mm e 0x0080-——————- */

Integer partCnt [MAXPARTS]; /* partial sum counts */

[*mm e 0x00CO0-——————- */

Longint totSum[MAXCHANS]; /* total sums for all channels */

[*mm e 0x0100-——-=—-—- */

PartBlk partSum[MAXPARTS]; /* partial sums for all channels */
[*mm e 0x0900---——-—- */

} Globals; /* static memory globals */

