
Alarms Task Logic Flow
Robert Goodwin
Thu, Oct 15, 2009

Introduction
The Alarms task runs every 15 Hz cycle, after the local data pool has been refreshed with 

the latest readings and replies to all active data requests due on that cycle have been delivered. Its 
main objective is to check all analog channels for being out of limits. It also checks for binary bits 
being in the wrong state. Whenever a change in Good/Bad state is seen, it queues an alarm 
message to the network via multicast. This message is a Classic protocol message, so that it can be 
seen by any interested node that listens to the Classic port. Besides transmitting the message, it is 
also passed internally via a message queue to AERS, the local application that is used to shepherd 
alarm messages to the Acnet alarm handler AEOLUS. A key requirement for Linac, since 1982, is 
the ability to inhibit beam on the next cycle, if any of a selected set of channels is in the Bad state. 
This implies that a complete alarm scan must be done on every cycle.

Three types of alarm scans are done. The analog alarm scan covers numeric 16-bit readings, 32-bit 
raw floating point readings, and combined binary 16-bit status words. The binary alarm scan 
checks for individual status bits being in the wrong state. (This bit-based binary alarm scan does 
not cause AERS to pass messages to AEOLUS.) Finally, the comment alarms are those announcing 
news of interest, only two of which have ever been defined. These are the VME SYSTEM RESET 
message, emitted after a front end reboots, and the VME ALARMS RESET message, which is sent to 
denote that an alarms reset action has been performed. (This message is normally disabled lest too 
many front ends in a project emit it all at once.) An alarms reset action is normally triggered by 
reception of a Big Clear message from Acnet. 

Note that option switch #6, if set at reboot time, inhibits alarm scans. This “stand-aside” switch also 
skips the auto-restore of settings at reset time, and it disables Data Access Table processing, so that 
no new data is read, and no local applications are run. It is used during system configuration.

Overall logic flow
The Alarms task is structured as a forever loop that awaits task event 0 to spur it into 

action. The sequence of task operations is as follows: Every cycle, Update sends event 0 to 
QMonitor, which sends event 3 to DaTime, which sends event 0 to Alarms.

If task event 0, perform alarm scan:

Call ALSCAN perform the complete alarm scan.

If task event 5 set, ACTBUILD: rebuild block of currently active channels.

If task event 6 set, ACTBUILD: rebuild block of currently active bits.

If task event 7 set, ACTBUILD: rebuild block of currently active comments.

Send task event 3 to wake up Appl task, so the current page application can run.

Blocks of currently active channels/bits/comments
There is an allocated block of the currently active entries for analog channels, binary bits, 

and comments. This makes the alarm scan more efficient, because it does not have to examine 
inactive ADATA, BALRM, CDATA table entries. This is especially significant for PowerPC nodes, in 
which each access to nonvolatile memory, wherein these three tables reside, costs about 1 µs.

Such blocks are rebuilt when a setting is made to an alarm flags field that affects the active flag, or 



every 9 minutes (termed a back-up build), even when no changes are made.

Each type 0x0A block has a 32-byte header, with the following fields starting at offset 8 bytes:

Field Size Meaning
ACTIVT 2 Time to build table, in µs
ACTIVN 2 Current #entries in table
ACTIVMN 2 Min value for ACTIVN
ACTIVMX 2 Max value for ACTIVN
ACTIVC 4 Diagnostic count of non-backup builds
ACTIVCB 4 Diagnostic count of backup builds
ACTIVDT 8 Date-time of last non-backup build
ACTIVA n*2 Active indices array (channels/bits/comments)

This info is accessed by the ALRM page application to summarize the alarm scan load in one node, 
or in a set of nodes contained in a file DATANxxx. See note, Alarm Scanning Info.

ALSCAN logic flow
If Bit 0x00A1 is set, call ALRESET to reset all alarms, then call ARSTMSG to output the alarms 

reset comment message "VME ALARMS RESET", if enabled, and reset the Bit.

If Bit 0x00A0 is set, call TRIPCLR to clear analog and binary trip counts, and reset the Bit.

For each 15 Hz cycle, after 1 second has passed since system reboot, test beam status Bit 0x009F, 
setting the BEAM byte variable accordingly. (If Bit 0x009F is 0, it means beam.)

If no active comments block, create one, set task event 7 internally. If comments block, call CSCAN, 
then check cycle counter for multiple of 8192 cycles (about 9 min at 15 Hz) plus 20. If so, set 
internally task events 7, 8. This will cause a rebuild of the active comments block.

If no active analog channels block, create one, set task event 5 internally. If analog channels block, 
call ASCAN, then check cycle counter for multiple of 8192 plus 22. If so, set internally task events 5, 8 
to cause a rebuild of the active analog channels block.

If no active binary bits block, create one, set task event 6 internally. If binary bits block, call BSCAN, 
then check cycle counter for multiple of 8192 plus 24. If so, set internally task events 6, 8 to cause a 
rebuild of the active binary bits block.

If any analog channel or binary bit has its beam inhibit flag set and was found to be in the Bad 
state during the alarm scan, set control line (relay) to inhibit beam on the next cycle; otherwise, 
clear that control line.

TRIPCLR logic flow
This function merely zeros the 12-bit trip counts for all channels, bits, and comments, no 

matter whether they are currently active. It also sets the time-of-day at offset 64 in the nonvolatile 
PAGEM table. This time is shown on Page B to indicate when the trip counts were last cleared. To 
provoke a system to clear its alarm trip counts, set Bit 0x00A0.

ALRESET logic flow
This function clears the good/bad bits to good. A recent modification also clears the 

tries_now nibble for each channel/bit that is currently in the Bad state. This is to ensure that the 
very first scan following an alarms reset that finds a channel, say, out of tolerance, will set it 
immediately to the Bad state, even when the tries_needed specification is greater than 1. This is 

Alarms Task Logic Flow p. 2



especially important for a channel that is meant to inhibit beam when it is Bad.

Alarm-related system tables
Three system tables are accessed by the Alarms task when performing its function. The 

ADATA table houses an array of entries for each analog channel that consist of integer readings, 
nominal/tolerance values, the alarm flags, and a trip count.

Field Size Meaning
READNG 2 Reading value
SETTNG 2 Setting value
NOMNAL 2 Nominal value, or min value for min/max cases
TOLRNC 2 Tolerance value, or max value for min/max cases
AFLAGS 2 Alarm flags, detailed below
ACOUNT 2 Alarm trip count
MOTORC 2 Motor count, used for SOS value for digital pattern case
SPARE 2 --

The BALRM table holds the similar alarm-related fields for the individual binary bit alarm scan. Each 
4-byte entry holds the required data for a single Bit of binary data.

Field Size Meaning
BFLAGS 2 Alarm flags, detailed below
BCOUNT 2 Alarm trip count

The CDATA table holds alarm-related info for each comment, even though only 2 are defined.

Field Size Meaning
CFLAGS 2 Alarm flags, detailed below
CCOUNT 2 Alarm trip count
CTEXT 24 Comment text
CDEVX 4 Acnet device index, used for more efficient reporting to AEOLUS

The FDATA table holds data for “raw floating point” channels. Such channels have only a 32-bit 
floating point representation, just as they were “born.” There is no 16-bit integer equivalent.

Field Size Meaning
FREADNG 4 Raw floating point reading
FSETTNG 4 Raw floating point setting
FNOMNAL 4 Raw floating point nominal, or min, value
FTOLRNC 4 Raw floating point tolerance, or max, value

For raw floating point channels, the ADATA fields AFLAGS and ACOUNT are referenced. Bit FLT of 
AFLAGS is set to denote the channel is a raw floating point channel.

Alarm flags word bit assignments

Bit# Name Meaning
15 ACT 1=active, so that alarm checking is enabled for this channel/bit
14 BIN 1=pattern, the 16-bit channel reading is a combined binary status word
14 NOM 1=nominal state for individual binary bit case
13 INH 1=inhibit beam on the next cycle if this channel/bit is Bad
12 FLT 1=raw floating point comparison checking to be used for this channel.

Alarms Task Logic Flow p. 3



11 BST 1=scan for alarms only on beam cycles, according to Bit 0x009F
10 BYP 1=bypass this channel/bit on the next cycle
9 ACC 1=used to avoid hysteresis logic for min/max case
8 BAD 1=Bad, 0=Good
7 LOG 1=Log inhibit, no messages for this channel/bit, but do trip counting
6 INV 1=data invalid, used for missing SRM replies.
5 LIM 1=use min/max logic, 0=use nominal/tolerance logic
4 n.u.
3–0 TRY 4-bit tries_needed specification, where 0=1 try, 1=2 tries, ..., 15=16 tries.

The tries_needed specification requires a corresponding tries_now count field. This is found in the 
upper 4 bits of the 16-bit alarm count field. The low 12 bits house the trip count, incremented every 
time the BAD bit changes state; hence, the number of trips is half the size of the trip count.

ASCAN logic flow
Scan all active analog channels by referencing the active channels block.

Collect specs for system tables ADATA, FDATA. The latter is needed for channels that have the 
floating point (FLT) flag bit set, so that floating point arithmetic is used with the 32-bit floating 
point readings, nominals and tolerance values in the FDATA entry.

Scan through the list of channel numbers in the active channels block. For each one, perform the 
following logic:

Look up the ADATA entry for this channel, and check the alarm flags field. If the ACT bit is set, scan 
this channel for alarm conditions; else, move on to the next channel.

If BYP flag bit set, clear BYP, clear ACT, and if BAD bit set, post Good message. (When an alarm flags 
setting is processed that would clear the ACT bit, the BYP bit is set internally, so as to be able to 
post a Good message if the channel was Bad when its scanning was deactivated/bypassed.) 

If BST bit set, meaning the scan should only be done on Beam cycles, check BEAM. If BEAM indicates 
a non-beam cycle, skip to the end to check for beam inhibit.

If INV bit set, it means that the data reading is invalid, likely because of failure to receive an 
expected SRM reply on this cycle. Clear both the INV bit and the BAD bit, clear the tries_now 
nibble, skip to end. The idea is to assume the data is Good if it is invalid. (Alarming on SRM failures 
is done another way, based upon a combined binary status word that contains status of SRMs.)

There are two cases. Either the channel is currently Good or currently Bad. First the Good case:

If BIN bit set, it means we must do pattern matching logic, as this reading is a digital pattern. 
Calculate the SOS (status of statuses) as the exclusive OR of the reading with the nominal value, 
ANDed with the tolerance mask. This value has “1” bits for all status bits that are Bad. Compare 
the SOS value with the motor count word MOTORC for this channel. (Note that such a channel 
whose reading is a digital status word cannot have motor control.) If it matches, clear the 
tries_needed counter and skip to the end. (The idea is that we want to post a message any time the 
SOS value changes, implying that one or more bits changed its Good/Bad state.) If it does not 
match, count tries_now, and if not enough yet, skip to end. If tries_now reaches tries_needed, 
update the MOTORC with the SOS. If it is nonzero, it means we have new Bad-ness to report, so 
clear the Bad bit so that ASNEW will properly post a new Bad message. Then call ASNEW.

Alarms Task Logic Flow p. 4



If BIN bit not set, we have the usual case of analog comparison checking for this channel’s latest 
reading. There are two cases, integer and floating point. 

If FLT bit not set, it means we use the usual 16-bit integer comparison logic on the reading value 
found in the ADATA table. If the LIM bit is not set, use nominal/tolerance logic. This logic includes a 
hysteresis characteristic, in which a channel that is currently Good will become Bad if its reading is 
found more than the tolerance value from the nominal value. But a channel that is currently Bad 
will only become Good if its reading is found within half a tolerance of the nominal value. This is 
done to avoid the alarm message chatter that might occur if the reading lies very nearly one 
tolerance from the nominal value. Note that this hysteresis characteristic applies for both integer 
and floating point alarm checking. For the min/max cases, there is no hysteresis component.

If the reading is within the tolerance range of the nominal value, it is still Good, so reset the 
tries_needed count, and skip to the end. If the reading is outside the tolerance range, decrement 
the tries_now count, and if it meets the requirement, post a Bad message via ASNEW.

If LIM bit set, it means we use min/max logic, in which the nominal field holds the min value and 
the tolerance field holds the max value. The comparison logic presumes signed values for all. If the 
comparison shows a reading value >= lower and <= upper, then we still have the Good state, so 
clear the tries_now count and skip to the end. But if we have the Bad state, in which the reading is 
outside the min/max range, decrement the tries_now count to see whether we have satisfied the 
tries_needed requirement. If we have, call ASNEW to post a Bad message.

If FLT bit set, it means we must use floating point comparison logic on the reading value in the 
FDATA table. If the LIM bit is set, use min/max logic, else use nominal/tolerance logic, obtaining 
the latter values from the FDATA entry.

Whenever a change in the alarm state for a channel is detected, ASNEW is called. It toggles the BAD 
flag bit, increments the trip count, taking care not to overflow the 12-bit field, and if the LOG bit is 
not set, it calls ANEW. Function ANEW builds a Classic alarm message block, then calls QMSG to queue 
it to the network. If 16 messages have been queued this cycle, call NEXTTASK to not hog the CPU.

At the end of the ASCAN code loop, the alarm flags are checked for both the BAD and INH bits set, 
and the LOG bit not set. If this is the case, increment AINHIBIT. Later on, this will help determine 
whether to inhibit beam on the next cycle.

For the second case of an analog channel currently in the Bad state, the logic is very similar to that 
above, but we are watching for a change to the Good state; otherwise, no message is needed. For 
the nominal/tolerance checking, the special variation of using half a tolerance applies.

BSCAN logic flow
Function BSCAN performs alarm checking on individual binary bits. Its logic is much simpler 

than the analog channel case. The BALRM table has one entry for each Bit, including the 2-byte 
alarm flags and the 2-byte trip count. At the end of checking each Bit, just as for the analog case, a 
check for the current Bit having both BAD and INH bits set, and LOG bit not set, is made. If so, 
increment BINHIBIT, which will be used to help decide whether beam is to be inhibited on the 
next cycle. The idea is that a bit or channel that does not emit an alarm message, because its LOG bit 
is set, must not be allowed to inhibit beam. It is unkind to inhibit beam but not explain why!

When a change of state occurs for a binary bit, BSNEW is called. This function toggles the BAD bit, 
increments the trip count, and if the LOG bit is not set, it calls BNEW, which then builds a Classic 
alarm message block and calls QMSG to queue it to the network.

Alarms Task Logic Flow p. 5



There is a special Bit 0x00A7 that, when set, inhibits all alarm scanning. It is not expected that this 
option be used often, if ever. But if this Bit is set, the only alarm scanning done is for this Bit, which 
allows for generating a binary alarm message when it is set, to serve as a reminder that alarm 
scanning (for everything else) is inhibited. In Linac front ends, this Bit is enabled for alarm 
scanning, and it is also set to inhibit beam when it is set.

CSCAN logic flow
Function CSCAN is even simpler. Each 32-byte CDATA table entry houses a flags word, a trip 

count word, and 24 characters of text. If the ACT flag bit is set, it tests the BAD bit. If it is set, it calls 
CSNEW. Function CSNEW toggles the BAD bit (to zero), increments the trip count, and if the LOG bit is 
not set, it calls CNEW to build an alarm message block and calls QMSG to queue it to the network. 

Alarm message multicast delivery
The destination node# for the Classic multicast messages is specified in the 4th word of the 

PAGEM table. It is of the form 0x09Fx, where x ranges from 0–E. The corresponding multicast IP 
addresses are in the range 0xEF8002Fx, based at 239.128.2.240. The corresponding multicast 
ethernet addresses are 0x01005E0002Fx.

If a front end is listening to one of these multicast addresses that is used to target alarm messages, 
the Classic task, on receiving such a message, allocates an alarm message block to hold it and 
queues it to the network in the usual way, but it sets the “used” flag to denote that it should not be 
actually transmitted. This allows the QMonitor task to notice such messages, and if specified via 
the Bits 0x00Ax mentioned above, transmit them to its serial port. This is used by Linac node0616 
to generate an alarms log listing for a special monitor in the MCR. We also use this scheme to 
support logging these alarm messages in test nodes via terminal emulators so the alarms log can 
be captured long term. As these alarm messages are produced at 15 Hz resolution, it is possible to 
analyze at that level the behavior of hardware, even across an entire project, when a trip occurs.

The above discussion of alarm scanning results in Classic alarm messages that are queued to the 
network as often as 15 Hz, if necessary. After each message is sent, one of the functions of the 
QMonitor Task is to notice that it has been sent, and before freeing the allocated alarm message 
block, it checks to see whether Bit 0x00A3 is set. If so, it arranges to format an ascii alarm message 
to send to the local serial port. Bit 0x00A2 is also checked to see whether an ascii message should 
be displayed on the bottom line of the little console. If Bit 0x00A4 is set, all alarms are output in 
this way, serial and/or bottom line; otherwise, only binary alarms are listed.

Alarm messages for Acnet
The Acnet alarm handler is called AEOLUS. It receives alarm messages from all front ends 

and delivers them to many console alarm windows for operator viewing. For support of this 
delivery, the front ends described herein use the local application AERS, which collects local alarm 
messages, sent by QMonitor via an internal message queue as it is about to free the Classic alarm 
message block, and sends them to AEOLUS. But it takes care not to speak too often, since all front 
ends needs access to AEOLUS. It sends up to 22 alarm messages in one Acnet message, after which 
it refrains from sending more for about 4 seconds. It also waits up to 4 cycles before sending a 
suddenly created message, so as to allow for others that may occur in the next few cycles to be 
delivered together in the same message. Note that this rather leisurely pace does not imply a delay 
in inhibiting beam, as each front end operates its own control line (relay) that in hardware can 
prevent beam from being accelerated on the next cycle.

Efficiency of alarm scanning
Each front end fills a data pool every 15 Hz cycle with the latest readings of all connected 

Alarms Task Logic Flow p. 6



devices. The alarm scan is based upon the readings in this data pool; hence, it can be done 
efficiently. The alarm scanning logic does not depend upon how the data was collected; it only 
deals with the data pool contents. From the description found above, it may seem to be complex, 
but it is actually simple. The complexity arises from so many options that are allowed to influence 
the logic needed for each channel. Entire alarm scans in one node take well under 1 ms.

Tries_needed commentary
A key Linac controls requirement was to be able to inhibit beam on the next 15 Hz cycle if 

any of a set of signals was found to be Bad. The Alarms task supports this, fundamentally. But if a 
device is set for tries_needed > 1, that device, when it goes Bad, cannot meet the key requirement. 
When electing the option, a user should be careful of the consequences, since the tries_needed 
number of cycles will have to be Bad before beam can be inhibited. For a device that is not set to 
inhibit beam when Bad, however, there is no such concern, because the worst that can happen is 
that the alarm message may be posted slightly later, yet still well within human response time.

Conclusion
This note describes the logic associated with alarm scanning supported by the code in Linac-

style front ends, whether based upon the 68K or PowerPC platform. All devices are read into a 
data pool every 15 Hz cycle, providing the basis for efficient alarm scanning logic. Especially 
important for Linac is the support for inhibiting beam on the next cycle when any of a selected set 
of devices is found to be in the Bad state. This feature has been in place for more than 25 years.

When changes in Good/Bad states occur, the front end multicasts alarm messages via the Classic 
protocol, allowing any node to monitor them, either via ethernet or via a serial port. It also 
delivers alarm messages to AEOLUS using the Acnet protocol. Alarm block settings affect alarm 
properties in the usual way via the Acnet SETDAT/SETS32 protocols.

Alarms Task Logic Flow p. 7


