
Clock Event Action
System addition
Robert Goodwin
Fri, May 1, 2009

This note describes new support for clock event-triggered action in the front end. Until now,
actions based upon clock events have been limited to the time early in the next 15 Hz operational
cycle of the front end, based upon a clock event that occurred within the last 66 ms cycle. But there
may be cases that require more prompt action following an event occurrence. The approach taken
here is to establish a new call type for a local application (LA).

This solution has an analog in the case of serial port input invocations, which allow for more
prompt action following reception of a line of text, for which a special serial LA call type (5) is
used. In the case described here, a new special event LA call type (6) is used.

Clock event interrupt
When a clock event occurs, the event interrupt handler reads from a hardware FIFO on the

Digital IP/PMC Board. This processing includes updating an event bit map and recording both the
time of the event and the elapsed time since the last occurrence of that event. It also writes a
record of the event occurrence into the EVTLOG data stream queue, if one exists. The latter is
interrogated by little console page application EVTQ. The bit map is displayed by PA EVNT.

Event occurrence info is to be passed to an LA instance. Recognizing that the need for this facility is
likely to be rare, we do not want to cause task level activity for every event occurrence. To that
end, a new bit map EvtMapLA indicates which events have LA interest of any kind. The event
interrupt code checks this bit map to see whether it should do anything more. If the bit is set, it
writes the event number into a simple queue, and it sends “task event” 6 to the Update task. (Use
of the Update task obviates the need to create a new task for this purpose.) So, the event interrupt
code has little extra work: test the bit map, and if the event bit is set, write the event number into a
simple queue and send the new task event.

Task level
When the Update task runs and detects the new task event 6, it scans the simple queue,

starting from where it last left off, to see what event has just occurred. For each such event, it
reviews a table EVTLA of all LA event interests. Each entry has an event number, a diagnostic
counter, and a pointer to the LA instance parameters to be passed to the LA whenever it is
invoked. For each entry matching the event number (or event range), it calls the LA, using the
new call type (6). To pass the event number to the LA, the second parameter is usurped; i.e., it is
set to the event number being passed just before the call is made. (The first parameter is always
the LA instance enable Bit#.)

Table management routines are provided to maintain table EVTLA. Two functions suffice:

short AddEvtLA(event, instLA); /* add an EVTLA entry */
short DelEvtLA(event, instLA); /* delete an EVTLA entry */

When an LA registers its interest in being invoked for a specific event, it calls AddEvtLA. When it
no longer wants such calls, say, upon its termination, it calls DelEvtLA. These routines maintain
both EVTLA and EvtMapLA. The function AddEvtLA checks that the same (event, instLA) pair is
not already in the table, checks that there is room to add a new entry, then adds it and updates the
EvtMapLA. The function DelEvtLA does the reverse. It finds a match on the (event, instLA) pair,
clears it, and compresses the table to remove the hole. It also rebuilds EvtMapLA.

To allow for an entry to represent a range of consecutive event numbers, one can set the hi byte of
the event number 2-byte value to the upper end of the range of interest. For example, if one
wanted to be alerted to any event in the range 0xA0–0xAF, one would use the event parameter
value 0xAFA0. For a single event selection, the hi byte is expected to be zero.

When an LA using this service terminates, it will naturally want to release all of its entries. To
make this easy, use 0xFFFF in the event parameter of the call to DelEvtLA. That special value
denotes that all entries in EVTLA for which the LA instance field matches that given in the call to
DelEvtLA are to be removed from the table. (It has no special meaning for AddEvtLA.)

The meaning of instLA is a pointer to a LATBL (Local Application Table) entry. It is actually 8
bytes offset from the start of the entry, so that it points to the static memory pointer, saved from
the LA instance initialization code, and the following ten parameter words. Every LA knows that
this pointer is its second argument. (The first argument is the call type number.)

Details
The layout of the EVTLA table has an 8-byte header:

Field Size Meaning
key 2 =‘EV’ as visual reference
nEv 2 #entries
cnt 4 total count of events taken from EVNTQ

Each entry is 8 bytes in length, as follows:

Field Size Meaning
evnt 2 clock event number, or event range
cntr 2 count of LA instance calls
instLA 4 address of LATBL entry + 8

The layout of the simple event queue EVNTQ is as follows:

Field Size Meaning
OUT 2 offset to next entry to be removed
IN 2 offset to next entry to be written
LIMIT 2 size of queue, including header = 0x0100
START 2 offset to first entry in queue = 0x0008

The single byte entry in EVNTQ is, of course, the event number.

Memory assignments
Assume the following low memory assignments for the needed data structures:

0x002C00 EVTLA Table of events of interest to LA instances (0x0100)
0x002D00 EVNTQ Simple event queue read by EvtHand in Update task (0x0100)
0x002F60 EvtMapLA Event bit map of all events in EVTLA entries (0x0020)

With these assignments, there is room for 30 entries in EVTLA, and 248 events in EVNTQ. (The 256-
byte area based at 0x002E00 is unavailable, as it is already used for FLTMAP, which is a bit map of
the FLT alarm flag bits for all the analog channels. It facilitates Cycle data updates.)

Note that low memory starting at 0x002F00 has been used for beam budget monitoring. The

Clock Event Action p. 2

above assignment of EvtMapLA allows for six 16-byte BBM entries. Only two are used as yet.

Note that the event bit map CLKEVTB that is set by event occurrences in the event interrupt
routine is based at 0x002F80. So, EvtMapLA immediately precedes CLKEVTB. This should make it
easy for the event interrupt code to access it after it sets the event bit in CLKEVTB.

Test vehicle
A new LA called EVTL was designed to test this new feature, with the following parameters:

Parameter Size Meaning
ENABLE B 2 Usual enable Bit#
(EVENT) 2 Reserved for passing the event# in the event LA call
LATENCY C 2 Time from event occurrence to event LA call.
EVENT1 2 Event# for AddEvtLA call
EVENT2 2 Event# for AddEvtLA call

This LA is designed to measure the event action latency, which is the time from the event
occurrence until the LA instance is called. It does this by accessing the event time via ClkEvtT and
the current timer value, accessed via MicroSec(). The difference is the latency, in µs.

But this LA also helps to test the functionality of AddEvtLA and DelEvtLA in maintaining the
EVTLA table and the EvtMapLA bit map. It monitors the values of the two EVENTx parameters. If a
change is seen, it calls EvtDelLA to remove the old entry and AddDelLA to add the new one.

The result latency value is assigned to the target channel as given by the LATENCY parameter.
Executing the LA in a 68K node, latency readings of 120–140 µs are typical, assuming that the front
end is idle when the clock event occurred. The same code in a PPC node typically takes 30–50 µs.

Clock Event Action p. 3

