
PowerPC/IRM Task Timing
Early performance comparison

Tue, Apr 17, 2001

The front-ends used in many projects at Fermilab are IRMs that are based on the 68040 CPU. A new 
version of the system code is based upon the PowerPC and will be used as an upgrade to the earlier 
68020-based front ends used to support Linac controls. The PowerPC is expected to leap frog over the 
IRM performance level. This note compares some of early task activity timing between the new 
PowerPC-based systems and the 68040-based IRMs.

Whenever timing comparisons are made, one has to take all potential variations into account. The 
IRMs run without “little console” hardware, for example. One PowerPC system used for timing 
measurements was connected to such console hardware. this is significant because it takes more time 
to write to the real console video ram than to a virtual display, since we throttle writes to video ram to 
the raster scan retrace time to keep from causing “snow” on the screen during updates. Until we 
improve this throttling logic, we are limited to a 15 µs/character average writing time to the screen. 
Writing 400 characters to the screen can therfore take 6 ms, independent of the power of the CPU. But 
it’s a bit more complicated than that. The raster scan timing is obtained by monitoring a status bit 
whose state identifies the acceptable time to write to the video ram. When this status bit indicates ok, 
up to 4 characters are written. But if the next 4 characters are ready while the status bit is still ok, they 
can piggy-back on the same raster scan time, which is about 64 µs. Thus, it does depend upon the CPU 
performance.

Task timing results

Extracted from recent task timing examples, here are some comparisons:

Task PowerPC IRM Activity
Cons .01 .07 Usual Console Task idle
DTim .01 .08 Usual time-of-day marking
QMon .01 .06 Queue monitor idle
Appl .02 .12 Page A idle
Serv .01 .07 Server Task--no server replies due

With the times quoted in ms, the above few examples measure very short activities, and therefore not 
very important ones. But they show that the PowerPC CPU is often 6–8 times as fast as the 68040. (The 
68K system code is written in assembly language, whereas the PowerPC code is written in C. From 
previous study, we regard this language factor as a 30% effect, which is mostly ignored here.)

Task PowerPC IRM Activity
Clas .08 .75 Request for 64-byte analog descriptor
Updt .14 .34 Build reply to above request
tSX .09 — Time to transmit reply datagram

In this simple example of a one-shot request/reply, interpretation of the request shows the full 
PowerPC enhanced performance. But building the reply message is not quite so efficient for the 
PowerPC. It may be that the network stack works harder. The tSX task is the Transmitter Task that 
invokes sendto(); it does not return until the transmission is finished. By comparison, the IRM software 
buffers the datagram to the network hardware, allowing further processing to continue. Still, in this 
example, the PowerPC is still an improvement over the IRM.

Task PowerPC IRM Activity
Appl .45 2.49 Page A keyboard int: request descriptor
Appl 1.60 1.17 Page A write reply data to screen



In processing the keyboard interrupt action to build the request, the PowerPC is again 5 times faster. 
When updating the screen with the reply data, however, we must take into account the relatively slow 
logic that writes to the screen, as detailed above. If the IRM were connected to a little console, it would 
have been much slower. 

Task PowerPC IRM Activity
ALRM 1.94 1.15 Alarm scan for 1024 channels, 1024 bits

The alarm scan timing here really measures the overhead in scanning so many entries in the 
appropriate tables, since nearly all entries in these nodes are inactive, or ”bypassed.” But IRMs with 
many channels enabled for checking do not vary much from this. The reason why the IRM shows a 
faster scan time is that this alarm scan logic is heavily dominated by accesses to the nonvolatile 
memory tables, especially the ADATA table. In the PowerPC system, this nonvolatile memory has a 
very slow access, on the order of 1 µs. Furthermore, such accesses cannot be cached, lest the 
nonvolatility of the memory be found lacking. (We learned this empirically.) So the PowerPC timing 
takes a severe “hit” in this case. Still, this job only has to be performed every 66 ms, so there is time 
available. If we double the number of channels and bits, this time will also double. It is anticipated that 
some of the upgraded Linac nodes will be doubled.

Acnet-related times
In an Acnet front-end, concern may be raised about the timing of Acnet communications, 

especially RETDAT requests and replies. When many requests from Acnet consoles are active, 
especially in the 15 Hz Linac nodes, the front-ends bear a heavy burden in having to fulfill many 
requests every cycle. 

One example is the time to process a request for 50 analog 2-byte readings. This is a real-life case for 
Linac, in that a commonly-used display program that plots beam toroids and loss monitors throughout 
the Linac is used for this very purpose. The request message is about 800 bytes. The reply message is 
about 200 bytes, since each reading is accompanied by a status word. Here are results for the front-end 
receiving such a request and replying to it.

Tasks PowerPC IRM 133 Activity
Request .33 2.12 7.0 Receive, initialize request
Reply .26 .88 2.0 Build reply, transmit

For the PowerPC case, the request time includes the time needed for the Net, tSRd, ANET, and ACRQ 
tasks. The reply timing includes the timing for both the Updt task that builds the reply datagram and 
the tSX task that invokes sendto() to transmit it. For the IRM and 133 (MVME-133 board with 68020 
CPU as used in the present Linac nodes) cases, the request timing includes the SNAP, ANET and 
ACRQ tasks; the reply time includes only the Updt task time, since the actual time to transmit overlaps 
subsequent task processing. It is obvious from these results that thePowerPC performance will be a 
giant leap forward compared to that of the present Linac front-ends. Replies will be able to be 
delivered to many more Acnet consoles simultaneously.

Data Access Table timing
Every 15 Hz cycle, the first job for all these front-ends is to update the data pool by following 

“instructions” in the Data Access Table, following by updating all active non-server data requests with 
replies that are due on that cycle. A built-in diagnostic measures the elapsed time for each instruction 
entry in this table. Here are some representative samplings of this data:

Instruction PowerPC IRM 133 Activity
RBinary .40 .15 1.5 Update digital data pool

In the RBinary case, in which all binary data bytes are read to update the digital data pool, some 
explanation is required. All addresses of digital data bytes are initialized to point to nonvolatile 

PowerPC/IRM Task Timing p. 2



memory by default, which implies they are “software” digital bytes. Then hardware addresses are 
filled in as needed. Because most of them in these examples are therefore pointing to nonvolatile 
memory bytes, the slow accesses to such memory in PowerPC systems dominate the performance. 
Even so, there is an improvement over the present Linac nodes. But another wrinkle will make the 
PowerPC results worse in this case. For the klystron front-ends, many digital bytes are accessed via the 
Vertical Interconnect scheme. and such accesses to other VME crate memory cost 4 µs each. Most 
klystron stations have about 40 such bytes of digital data, so this part alone will take about 0.16 ms. In 
Linac stations, another detail comes into play, as the digital data includes many bytes that come via 
part of the 15 Hz arcnet transmission from the SRMs. It’s a bit digfficult to place a number on it, but the 
upgraded systems will have fewer accesses to nonvolatile memory bytes as a result. Out of a total of 
128 bytes digital data bytes, a typical klystron node may have 50 bytes coming from SRMs. Any way 
one analyzes it, there will be an improvement in the upgraded Linac nodes.

Instruction PowerPC IRM 133 Activity
SRMwait 10 10 10 Await data from one or more SRMs

This result merely indicates that the waiting time for SRM data does not depend upon the CPU’s 
performance. Only the response time of the 68332 CPU in the SRM hardware matters. One could ask 
why we cannot overlap the waiting time with some more useful activity. But there is not really any 
useful activity that can be done at this time early in the 15 Hz cycle, since we are trying to maintain a 
facade of a data pool that updates instantaneously from the point-of-view of an outside user. We 
cannot perform an alarm scan, nor execute the local applications, since the data pool is not yet ready 
with fresh data. We cannot entertain data requests, because they will likely try to access the data pool. 
There is no significant work that can be done, so the Update Task waits for the SRM replies, or it times 
out if they are not forthcoming. This is one part that the PowerPC cannot improve upon in the Linac 
upgrade.

The time required to execute local applications each cycle is harder to pin down. But the PowerPC’s 
basic CPU performance is expected to make a big difference here. This will especially be true for 
floating point calculations, even though the Linac nodes currently include the 68881 floating point 
processor. The PowerPC 750 chip built-in floating point is very much faster.

All in all, the PowerPC nodes, even after waiting for SRM data, are expected to support much greater 
loading than the current Linac front-ends. Also, the ethernet interface hardware is much faster than the 
current token ring chip support.

PowerPC/IRM Task Timing p. 3


